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Lagrangian submanifolds of S6 and the associative Grassmann

manifold

Kazumi Tsukada ∗

It is well-known that a six-dimensional sphere S6 admits an almost complex structure

defined by its natural inclusion in the space ImO of imaginary octonions. This almost complex

structure is not integrable but is nearly Kähler with respect to the induced Riemannian metric

from the inner product in ImO.

An oriented three-dimensional subspace of ImO is said to be associative if it is a canoni-

cally oriented imaginary part of some quaternion subalgebra of O. The set of all associative

subspaces is called the associative Grassmann manifold, which is denoted by G̃rass(ImO).

Then it is known that G̃rass(ImO) is an eight-dimensional compact symmetric quaternionic

Kähler manifold.

We focus on Lagrangian submanifolds of S6 and study the relationship of such submani-

folds with the geometry of G̃rass(ImO).

This is a joint work with K.Enoyoshi ([3]).

§1 The algebra of octonions and the Lie group G2

In this section, we recall fundamental properties of octonions following R. Harvey and H. B.

Lawson [5]. Let H = {x1+yi+zj+wk | x, y, z, w ∈ R} ∼= R4 (i2 = j2 = k2 = −1, ij = −ji =

k) be the algebra of quaternions and Sp(1) the group of unit quaternions. We denote the

subspace of imaginary quaternions by ImH. The algebra O of octonions is a normed algebra

whose the multiplication is given by

(a+ bε)(c+ dε) = (ac− d̄b) + (da+ bc̄)ε a, b, c, d ∈ H

([5]). Here ā is the quaternionic conjugation for a ∈ H. The algebra O is neither commutative

nor associative. Let ImO = ImH ⊕ Hε be the subspace of all imaginary parts of octonions,

which is identified with seven-dimensional Euclidian space R7.
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We define the alternating trilinear form φ on ImO by

φ(x, y, z) = ⟨x, yz⟩.

The 3-form φ is called the associative calibration on ImO ([5] p.113 Definition 1.5). The Lie

group G2 is defined by

G2 = Aut(O) = {g ∈ GL(O)| g(xy) = g(x)g(y), for any x, y ∈ O}.

It is well-known that the Lie group G2 is 14-dimensional and simple ([5]). Every automor-

phism of O fixes the subspace R ·1 ⊂ O and leaves the subspace ImO invariant. We also have

the facts that G2 is a subgroup of SO(ImO) ∼= SO(7) and that the following holds:

G2 = {g ∈ O(7)| g∗φ = φ}.

For the pair of unit quaternions (q1, q2) ∈ Sp(1)× Sp(1) and a+ bε ∈ O = H⊕Hε, we set

ρ(q1, q2)(a+ bε) = q1aq
−1
1 + (q2bq

−1
1 )ε.

Then we see that ρ(q1, q2) belongs to G2 and the kernel of ρ is {±(1, 1)}. Hence ρ is an action

of Sp(1)× Sp(1)/{±(1, 1)} ∼= SO(4) on O.

§2 The associative Grassmann manifold G̃rass(ImO) and its tangent space

We denote by G̃r3(ImO) the Grassmann manifold of all oriented three-dimensional subspaces

in ImO with dim G̃r3(ImO) = 12. G̃r3(ImO) is isomorphic to the Riemannian symmetric

space SO(7)/SO(3) × SO(4). If ζ ∈ G̃r3(ImO) is the canonically oriented imaginary part

of some quaternion subalgebra of O, then ζ is said to be an associative subspace. The

set of all associative subspaces is called the associative Grassmann manifold denoted by

G̃rass(ImO). Then it is known that G̃rass(ImO) is an eight-dimensional compact symmetric

quaternionic Kähler manifold which is described as G2/SO(4) (cf. [5],[11]). Moreover we see

that G̃rass(ImO) is a totally geodesic submanifold of G̃r3(ImO).

The associative calibration φ can be viewed as a function on G̃r3(ImO). The following

has been shown by Harvey and Lawson;

Proposition 2.1 ([5]) For ζ ∈ G̃r3(ImO), φ(ζ) ≤ 1 with the equality if and only if ζ is

associative.

Then we define level sets M̃(t) of G̃r3(ImO) for −1 ≤ t ≤ 1 by

M̃(t) = {ζ ∈ G̃r3(ImO) | φ(ζ) = t}.

The Lie group G2 acts transitively on each M̃(t) (−1 ≤ t ≤ 1). The level set M̃(1) coincides

with the associative Grassmann manifold G̃rass(ImO). Reversing the orientation of subspaces
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in M̃(−1), we see that M̃(−1) is isometric to M̃(1). For −1 < t < 1, M̃(t) is diffeomorphic

to G2/SO(3).

We will describe the tangent space of the associative Grassmann manifold G̃rass(ImO)

following F. Nakata ([9]). By the standard argument using the theory of vector bundles

for the differential geometry of Grassmann manifolds, the tangent space of the Grassmann

manifold at ξ ∈ G̃r3(ImO) is identified with the space Hom(ξ, ξ⊥) of linear homomorphisms

of ξ to ξ⊥, where ξ⊥ denotes the orthogonal complement of ξ in ImO. The tangent space of

the associative Grassmann manifold G̃rass(ImO) is described as follows:

TξG̃rass(ImO) ≃ {γ ∈ Hom(ξ, ξ⊥) | γ(e1)e1 + γ(e2)e2 + γ(e3)e3 = 0},

where {e1, e2, e3} denotes an orthonormal basis of ξ. This description is due to Nakata ([9]).

We denote the right hand side in the above equation by Homass(ξ, ξ
⊥).

§3 The nearly Kähler structure and submanifolds of S6

Let S6 be the unit sphere in ImO centered at the origin. Then S6 has an almost complex

structure J at p ∈ S6 defined by

Jpx = px, x ∈ TpS
6.

It is known that this almost complex structure J is not integrable. The Riemannian metric on

S6 is induced from the inner product ⟨, ⟩ on ImO ∼= R7. The induced metric ⟨, ⟩ is Hermitian

with respect to J . Then we define the Kähler form ω of S6 at p ∈ S6 by

ωp(x, y) = ⟨Jpx, y⟩, x, y ∈ TpS
6.

Then (S6, J, ⟨, ⟩) is an almost Hermitian manifold. Moreover it satisfies (∇̃XJ)X = 0 for all

vector fields X on S6 , where ∇̃ denotes the Riemannian connection. An almost Hermitian

manifold with this property is called a nearly Kähler manifold. We have the fact that the

group of automorphisms of (S6, J, ⟨, ⟩) is isomorphic to G2.

The nearly Kähler six-sphere has two typical classes of submanifolds: namely the class

of almost complex submanifolds and that of Lagrangian submanifolds or three-dimensional

totally real submanifolds. A. Gray ([4]) showed that there do not exist four-dimensional

almost complex submanifolds in S6. R. L. Bryant([1]) proved that every compact Riemann

surface can be realized as an almost complex curve in S6. Many researchers have studied

two-dimensional almost complex submanifolds or almost complex curves and obtained fruitful

results.

We recall Lagrangian submanifolds of six-sphere. We define a trilinear form ϕ and a

complex-valued form Ω on S6 using the associative calibration φ as follows:

ϕ(x, y, z) = φ(x, y, Jpz) x, y, z ∈ TpS
6

Ω(x, y, z) = ϕ(x, y, z) +
√
−1φ(x, y, z)
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Then Ω is a (3, 0)-form with respect to J . We have the following interesting relations between

the Kähler form and the associative calibration.

Proposition 3.1 (cf. K.Mashimo [8]) For p ∈ S6,

(1) ωp = p⌋φ
(2) dω = 3φ|S6

(3) dϕ = 4ω ∧ ω

We state the special Lagrangian geometry of S6 with respect to Ω. A three-dimensional

subspace ζ of TpS
6 is called a Lagrangian subspace if it holds that Jpx ⊥ ζ for all x ∈ ζ.

The condition is equivalent to ω|ζ = 0. We call a three-dimensional submanifold M of S6

a Lagrangian submanifold if the tangent space TpM is a Lagrangian subspace at each point

p ∈ M . The condition implies that ω restricted to M vanishes. Many researchers refer to

Lagrangian submanifolds in S6 as three-dimensional totally real submanifolds of S6. The

following remarkable theorem by N.Ejiri is known:

Theorem 3.2([2]) Any Lagrangian submanifold of S6 is orientable and minimal.

We call an oriented Lagrangian subspace ζ a special Lagrangian subspace with respect to

Ω if Ω(v1, v2, v3) = 1 for a positively oriented orthonormal basis {v1, v2, v3} of ζ. An oriented

Lagrangian submanifold M is called a special Lagrangian submanifold if the tangent space

TpM is a special Lagrangian subspace at each point p ∈ M . From the view point of calibrated

geometry, Mashimo showed the following:

Theorem 3.3([8]) If a three-dimensional oriented submanifold M of S6 is Lagrangian, then

it is a special Lagrangian submanifold, if necessary, we reverse its orientation.

We review basic facts on special Lagrangian subspaces of the tangent space of S6.

Lemma 3.4 Let ζ be a three-dimensional oriented subspace of TpS
6. Then either ζ or −ζ is

special Lagrangian if and only if ζ is a Lagrangian subspace and φ(ζ) = 0.

Lemma 3.5 Let ζ be a three-dimensional oriented subspace of TpS
6. If ζ is special La-

grangian, −Jpζ is associative. Conversely, if ζ is associative, Jpζ is special Lagrangian.

§4 The two double fibrations

Nakata ([9]) showed the following double fibration motivated to construct a theory of Penrose

type twistor correspondence for the geometries of S6 and G̃rass(ImO). Let F̃l1,ass(ImO) be a

flag manifold defined by

F̃l1,ass(ImO) = {(p, ξ) ∈ S6 × G̃rass(ImO) | p ∈ ξ }.

We define maps ω̄ and π− of F̃l1,ass(ImO) onto S6 and G̃rass(ImO) by the projections to the
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first factor and the second factor, respectively.

(4.1) F̃l1,ass(ImO)

ω̄
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S6 G̃rass(ImO)

These fibrations are G2-equivariant. He proved the following interesting result:

Theorem 4.1([9]) In the double fibration (4.1), for each p ∈ S6, π−(ω̄
−1(p)) is a four-

dimensional totally geodesic and quaternionic submanifold of G̃rass(ImO) which is isomorphic

to CP 2 and for each ξ ∈ G̃rass(ImO), ω̄(π−1
− (ξ)) is a two-dimensional sphere S2 which is

totally geodesic and almost complex in S6.

We consider another double fibration to associate the geometry of the associative Grass-

mann manifold with Lagrangian submanifolds of S6. As a preparation of constructing the

fibration, we recall the triple cross product:

x× y × z =
1

2
(x(ȳz)− z(ȳx)) for x, y, z ∈ O,

where ȳ is the octonion conjugation for y ∈ O. It is known that ⟨x, y× z×w⟩ are alternating
in x, y, z, w ∈ O and that the real part of x× y × z = φ(x, y, z) for x, y, z ∈ ImO. We recall

the level set M̃(0) defined in Section 2 :

M̃(0) = {ζ ∈ G̃r3(ImO) | φ(ζ) = 0}.

Let {v1, v2, v3} be a positively oriented orthonormal basis of ζ ∈ M̃(0) and put p = −v1 ×
v2×v3 = v1(v2v3). Then since the real part of v1×v2×v3 is equal to φ(ζ), we have p ∈ ImO.

Moreover, it holds that |p| = 1 and p is orthogonal to ζ. Then ζ is a subspace of TpS
6.

Moreover ζ is a special Lagrangian subspace, hence by Lemma 3.5, −Jpζ is associative. By

these, we can define another double fibration:

(4.2) M̃(0)

χ
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π
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S6 G̃rass(ImO).

χ(ζ) = −v1 × v2 × v3 = p, π(ζ) = −Jpζ

These fibrations are also G2-equivariant. For this double fibration, the similar result to

Nakata’ one holds:

Theorem 4.2 In the double fibration (4.2), for each p ∈ S6, π(χ−1(p)) is a five-dimensional

totally geodesic submanifold of G̃rass(ImO) which is isomorphic to SU(3)/SO(3) and for each

ξ ∈ G̃rass(ImO), χ(π−1(ξ)) is a three-dimensional sphere S3 which is totally geodesic and

special Lagrangian in S6.

Remark. S.Klein gives the classification of the totally geodesic submanifolds of G̃rass(ImO)

in [6]. In the following table, we list the maximal totally geodesic submanifolds of G̃rass(ImO).
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maximal tot. geod. dim.

SU(3)/SO(3) 5

CP 2 4

S2
r=1 × S2

r= 1√
3

/Z2 4

S2

r= 2
√

21
3

2

Theorems 4.1 and 4.2 give the geometric realization of totally geodesic submanifolds CP 2

and SU(3)/SO(3).

It is important and useful for the submanifolds geometry of Riemannian symmetric spaces

to characterize the tangent spaces of totally geodesic submanifolds, so called, curvature-

invariant subspaces, or Lie triple systems. For our cases, we have the following: For p ∈ S6,

we put

Sp = π−(ω̄
−1(p)) = CP 2, Lp = π(χ−1(p)) = SU(3)/SO(3).

Then for ξ ∈ Sp and ξ ∈ Lp, we have the following:

TξSp = { γ ∈ TξG̃rass(ImO) | γ(p) = 0 },

TξLp = { γ ∈ TξG̃rass(ImO) | ⟨γ(v), p⟩ = 0 for any v ∈ ξ },

under the identification of TξG̃rass(ImO) with Homass(ξ, ξ
⊥). Here we note that in the case

of CP 2 , p ∈ ξ and in the case of SU(3)/SO(3), p ∈ ξ⊥. They give the geometric description

of the Lie triple systems. Here we note that Sp = S−p, Lp = L−p.

For ξ ∈ G̃rass(ImO) and a one-dimensional subspace l of ξ⊥, we put

ml = { γ ∈ TξG̃rass(ImO) | ⟨γ(v), l⟩ = 0 for any v ∈ ξ }.

Then ml is a Lie triple system and coincides with the tangent space of Lp at ξ, where p ∈ l∩S6.

A five-dimensional subspace m of TξG̃rass(ImO) is called a SL-type subspace if there exists a

one-dimensional subspace l of ξ⊥ such that m = ml. For later use, we prepare the following

Lemma:

Lemma 4.3 Let p be a three-dimensional subspace of TξG̃rass(ImO). If there exists a SL-type

subspace m such that p ⊂ m, it is unique.

§5 The Gauss maps of submanifolds of S6 to G̃rass(ImO)

We show remarkable relations between Lagrangian submanifolds of S6 and the geometry of

the associative Grassmann manifold.

Let f : M → S6 be a Lagrangian immersion of a three-dimensional manifold M into S6.

Then by Theorem 3.3, f is special Lagrangian. By Lemma 3.5, −Jf(p)df(TpM) is associative.

We obtain a kind of Gauss map ν : M → G̃rass(ImO) defined by ν(p) = −Jf(p)df(TpM).
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Theorem 5.1 If f : M → S6 is a Lagrangian immersion, then the Gauss map ν : M →
G̃rass(ImO) associated to f is harmonic.

It is a similar result as a famous formula by E. A. Ruh and J. Vilms ([10] ).

Next we consider a reconstruction of Lagrangian immersions from maps to the associative

Grassmann manifold. First we define a new class of maps to G̃rass(ImO). Let ν̄ : M →
G̃rass(ImO) be a smooth map of a three-dimensional manifold M to G̃rass(ImO). We call

ν̄ an inclusive map of SL-type if there exists a SL-type subspace m of Tν̄(p)G̃rass(ImO) at

each point p ∈ M such that dν̄(TpM) ⊂ m. Then we have the fact that the Gauss map ν

associated to a Lagrangian immersion f : M → S6 is an inclusive map of SL-type. Conversely,

let ν : M → G̃rass(ImO) be an inclusive immersion of SL-type of a three-dimensional manifold

M . Then taking non-trivial double covering η : M ′ → M , if necessary, we obtain a map

f : M ′ → S6 which satisfies f(p) ∈ (ν ◦ η(p))⊥ and d(ν ◦ η)(TpM
′) ⊂ mRf(p) at each p ∈ M ′

due to Lemma 4.3.

Proposition 5.2 If f is an immersion, then f is Lagrangian and ν ◦ η is the Gauss map

associated to f and hence harmonic with respect to the induced Riemannian metric by f .

§6 Examples · · · Homogeneous Lagrangian submanifolds

Mashimo ([8]) classified compact Lagrangian submanifolds of S6 which are obtained as orbits

of closed subgroups of G2. That is, it is a totally geodesic spehere or it is congruent to one of

four kinds of Lagrangian submanifoldsMi (i = 1, 2, 3, 4). They are orbits of three-dimensional

Lie subgroups SU(2) or SO(3). The following is easy to prove:

Proposition 6.1 The Gauss map associated to a totally geodesic and Lagrangian submani-

fold is constant.

The Gauss maps νi : Mi → G̃rass(ImO) associated to Mi (i = 1, . . . , 4) are equivariant

under the corresponding Lie groups. In this note, we explain M3 and M4 only. The following

description of the action by SO(3) is due to J. D. Lotay ([7]): We identify ImO with the

space H3(R3) of homogeneous harmonic cubics on R3 by the following correspondence:

e1 7→
√
10
10 x(2x2 − 3y2 − 3z2);

e2 7→ −
√
6xyz; e3 7→

√
6
2 x(y2 − z2);

e4 7→ −
√
15
10 y(4x2 − y2 − z2); e5 7→ −

√
15
10 z(4x2 − y2 − z2);

e6 7→ 1
2y(y

2 − 3z2); e7 7→ −1
2z(z

2 − 3y2).

Then the standard SO(3) action on R3 induces an action on H3(R3). Then by this action

SO(3) is a subgroup of G2. Let M3 and M4 be the orbits through e2 and e6 of this SO(3)-

action, respectively. ThenM3 = SO(3)/A4 andM4 = SO(3)/S3 are Lagrangian submanifolds

of S6. In particular, M3 is of constant curvature 1
16 .

We compute the differentials dνi : TxMi → Tνi(x)G̃rass(ImO) of the Gauss maps at x ∈ Mi

(i = 3, 4), respectively, and determine the ranks of dνi .
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Proposition 6.2 The rank of dν3 is equal to 3 and the rank of dν4 is equal to 2.

Especially in the case of M3, the following holds:

Proposition 6.3 The Gauss map ν3 : M3 → G̃rass(ImO) is a minimal immersion with respect

to 15
8 ⟨, ⟩, where ⟨, ⟩ is the metric on M3.
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Given a Lagrangian submanifold in a symplectic manifold and a Morse function on the submanifold, we show that there is an isotopic
Morse function and a symplectic Lefschetz pencil on the manifold extending the Morse function to the whole manifold. From this
construction we dene a sequence of symplectic invariants classifying the isotopy classes of Lagrangian spheres in a symplectic 4-
manifold. 1. Introduction.Â  It is also worth mentioning the relationship between our result and the work of Seidel, who showed that if two
vanishing cycles of a Lefschetz pencil can be joined by a â€œmatching pathâ€  (see Section 8), then the total space of the pencil
contains a Lagrangian sphere bered over an arc in CP1; in the case where L âˆ¼= Sn. The notion of graded Lagrangian submanifold
serves to fix this ambiguity. We explain the theory in detail and give several applications. RESUME.Â  Both the construction and the
proof can be generalized to produce Lagrangian n-spheres with the same property for all even n. Here, using the method of graded
Lagrangian submanifolds, we will first reprove the result from [30] and its generalization in a considerably simpler way. Then, by a more
complicated construction, we produce similar examples of Lagrangian n-spheres for all odd n > 5. The reason why the remaining case n
= 3 cannot be settled in the same way is topological, and seems to have nothing to do with Floer theory. A Lagrangian Manifold is
defined as a submanifold of a symplectic manifold upon which the restriction of a symplectic form $\omega$ is vanishing. I'd like to
understand what this property means and how the flow of a Lagrangian submanifold differs from that of an arbitrary submanifold. To
summarise: What does the condition of vanishing symplectic for imply on a Lagrangian Manifold? What make Lagrangian submanifold
different to other submanifolds in the context of Hamiltonian Mechanics? Thank you in advance for your help. sg.symplectic-geometry
lagrangian-submanifolds.


