

Effect of Programming Education using Software Development Methods

Yasuyo KOFUNE
Osaka Prefectural Yodogawa Technology High School

Osaka, Japan

and

Takahiro KOITA
Doshisha University

Kyoto, Japan

ABSTRACT

It is necessary for high school students to learn knowledge and
skills of software design in order to improve their programming
skill. Students participate in a programming contest in class as a
way to improve programming skill while enjoying
programming. In programming contest application creation,
Agile, MindMap, UML and pair programming techniques are
used. In this study, we show the effect and problem of
improvement of students' programming skill by using these
methods, and consider the student software design class method
in which high school students cooperate.

Keywords: Programming Education, Agile Development, Mind
Map, UML, Pair Programming

1. INTRODUCTION

Many Japanese technical high school students work as
manufacturing engineers after graduation. To work as engineers,
not only expert knowledge and skills, but also logical thinking
ability, problem solving ability, and imagination are required.
Therefore, Japanese technical high schools have programming
classes for first-grade students to learn not only the knowledge
and skills of programming but also logical-thinking ability and
problem-solving ability. In programming classes, students learn
programming language grammar and algorithms of basic
processing such as loop processing and selection processing by
repeating inputting and executing sample programs from a
textbook, when they finished the textbook, they can practice to
create applications[1]. Students enjoy programming and learn
voluntarily in the early stages of programming learning.
However, as programming learning progresses, some students
quit. There are various reasons for students giving up on
programming learning. For example, students who are not good
at typing cannot proceed smoothly because much time is spent
looking for errors due to typing mistakes[2]. Some students
might have no interest in the result of running the sample
program. Students who have expectations in programming
classes are dissatisfied with not being able to write programs of
their own such as games. In order for students to have fun
learning programming, there is an approach to upgrade student
motivation and reduce typing and grammar learning, using
visual programming languages like Scratch[3].

We are considering a class method aimed at students enjoying
programming and improving programming skills.

Our study goals are as follows.
 Students enjoy programming by creating applications with

their own ideas.
 Students gain confidence in programming by completing

the application.
 Students want to learn more about programming and create

applications again.
 Students improve their ability to think logically by

programming their own ideas.
 Students improve problem-solving skills through trial and

error in the course of application creation.
 Students cooperate with other students to improve

imagination, expressive ability, and communication skills.

As a way to achieve the above objectives, we designed a
programming lesson using a programming contest. Experiences
of students making applications with student's own ideas will be
knowing the enjoyment of programming, confident in
programming lead to improved programming skills.

Students who participate in the programming contest have a
clear goal of completing their application. This goal leads to
voluntarily learning programming. Completion of the
application makes it possible for students to realize that
programming learning until this time is progressing well. With
the completion of the application, the students can see the result
of the programming learning until this time. Students are
motivated to learn programming in the future by seeing the
results. Voluntary programming learning leads to improvement
of student programming skills.

Students who participated in the programming contest used
Agile[4], MindMap[5][6], UML[7], and pair programming
methods in application creation. In this study, we show the
effects and problems of improvement of students' programming
skills using these methods, and show the necessity for students
to learn software design.

164

Proceedings of The 8th International Conference on Society and Information Technologies (ICSIT 2017)

2. OUR APPROACH

The programming contest in which the students participated
was a high school PC contest (mobile department)[8]. This
contest was for students to create and present Android
applications by team (three members) according to a
predetermined theme. Such contests with students using their
own ideas can help them enjoy programming and improve their
programming skill. Students who participated in the contest
were not good at programming and had no experience creating
Android applications. However, students actively created using
MindMap, UML and pair programming on the basis of the
Agile method.

The following describes the aim of using Agile, MindMap,
UML and pair programming methods for creation of an
Android application.

Agile:
This cooperative development of software by the students
demonstrates the effectiveness of Agile Development.Agile
Development is an umbrella term for several iterativeand
incremental software development methodologies.

The following two points illustrate the Agile Manifesto’s main
principles [4]:
・ The most efficient and effective method of conveying

information to and within a development team is face-to-face
conversation.

・Working software is the primary measure of progress.

Based on the concept of Agile, which emphasizes dialogue,
students make Android applications through dialogue. Students
collaborate on all Android application creation. In order to
create better applications, it is important to allow other
members' weak points and to mutually acknowledge each other.
By talking each other, the students share ideas of each other and
understand what other members are doing. Application creation
using Agile leads to improved cooperativeness and
communication skills of the students. Also, students have the
awareness that they are participating in the creation and have
confidence that there is something they can do.

MindMap:
Students used MindMap to organize ideas for Android
applications. MindMap draws a concept (theme) in the center of
a piece of paper using keywords and images, and connects
keywords and images radially associating from there, and
expands the idea. Students who are not good at putting together
ideas can use MindMap to organize thoughts and expand their
thoughts. MindMap also makes it easy for multiple students to
add ideas, share ideas, and collaborate. Figure 1 shows an
example of the Mind Map.

UML:
Students used UML to grasp the overall structure of the
application. Students had never used UML before, so they first
learned about UML. The students seemed to understand a little
of the use case diagram, activity diagram, sequence diagram,
but class diagrams and object diagrams were difficult. Students
gave up using UML and shared information on the functions
and screen design of Android applications in Japanese and with
illustrations. Figure 2 shows an example of the UML class
diagram.

Pair programming:
Students participating in the contest differed in programming
ability and typing skill. In pair programming, while students can
complement each other's missing abilities, they can cooperate to
create programs[9]-[11]. Students created the program in two
ways. One was to write code using Java language, and the other
was to use AppInventor. AppInventor is a programming tool
that combines blocks with built-in processing. Using
AppInventor does not require typing code[12].

Programming in the Java language requires students to learn the
grammar of the Java language and how to use the development
tools, but because the AppInventor tool is intuitively usable,
students can start using it immediately.

Programming with Java language is difficult for students. When
a problem occurs in the program, the students explore the cause
of the problem and think about the solution. In programming
with the Java language, the students often have to explore
whether the cause of the problem is processing logic, a
grammar mistake, a typing error or the like. Students take time
to identify the cause of the problem and it takes more time to
solve further.

In programming with AppInventor, students are able to narrow
down the cause of the problem to the logic of processing, and it
is easy to find a solution through trial and error.

Figure 1: Example of Mind Map

Figure 2: Example of UML class diagram

165

Proceedings of The 8th International Conference on Society and Information Technologies (ICSIT 2017)

3. DISCUSSION

The following describes the effects and problems of Agile,
MindMap, UML and pair programming methods.

Agile:
Based on the concept of Agile, students cooperatively created
Android applications. As students talk and create Android apps,
they can clarify what they did and also understand what other
students are working on. Students have awareness that they
themselves are participating in the creation. As students'
dialogue increased, the creation of Android applications
proceeded more smoothly. The cooperative work of the students
supplemented not only information sharing but also immature
technological understanding. Also, when the creation did not go
smoothly, the students were able to work without giving up
[13][14]. Conversation among students helped greatly in
creating applications in cooperation. By talking, the students
could learn about each other 's good and weak points. As the
students knew what they were doing, even if someone was late,
they could support smoothly. Moreover, they were able to
decide to share the work with considering the appropriateness
of each individual without misunderstanding. The students were
able to create applications fun by enjoying good cooperation
among students towards the common goal of application
completion. Students had a sense of accomplishment with the
completion of the application and gained confidence in their
abilities, which led to motivation to continue programming
learning.

MindMap:
Students initially came up with no ideas as to what kind of
Android application to create. Students, when trying to
summarize their thoughts in sentences, thought that it was
necessary to have proper sentences. It took too long for the
students to express their thoughts in sentences and to share it
with other students. By using MindMap, students became to
discuss various ideas in a short time and all the students were
able to participate in the discussion. MindMap connects words
and illustrations, so all the students were able to draw.
MindMap made it easy for multiple students to create, organize
and add ideas.

UML:
The students who participated in the programming contest did
not have experience writing programs or creating applications
based on their own ideas. They seemed to be completely
unaware of what they needed and what they decided and how to
process them in order to make their ideas an application. Just
learning grammar in the programming language, students did
not know how to think about how to handle their ideas by
computer.

Students tried to use UML to share information on the functions
and structures of Android applications, but they did not have
UML knowledge and it was too complicated to understand.
Students used Japanese and diagrams to organize the functions
required for the application and think about the processing
method. However, even with Japanese and figures, the students
could not smoothly consider the processing method. The reason
was that students had no experience creating applications, and
lacked the ability to think logically, express their own ideas, and
convey their thoughts to others. It is necessary for students to
put together their own ideas and learn to think about the

mechanism to achieve this. To write UML, the students need
to understand the required specifications and be able to think
logically. Learning UML leads to improvement of
expressiveness and logical thinking skills of students. It is also
effective to give students the ability to create applications with
their own ideas. Learning UML is extremely beneficial [15][16].

Pair programming:
Pair programming did not work for programming in the Java
language, but it worked well with programming with
AppInventor. In creation using the Java language, because there
were no students with high programming skills, none could
proceed smoothly. In creation using the Java language, because
there was no student with high programming ability, no one was
able to lead other students and creation could not proceed
smoothly. However, in creation using AppInventor, students
were progressing well while interacting with each other.
AppInventor takes time and effort to prepare a program shared
by two or more people, to connect the created program and to
complete the application. A program created by AppInventor
can’t exchange code easily. AppInventor is not suitable for
application creation by multiple people. However, pair
programming, which creates one screen together, is suitable for
programming with AppInventor.

Next, characteristic problems in the case of creation by
AppInventor will be described. AppInventor creates screen
design and application processing by combining blocks with
processing incorporated. For Android application creation,
using the blocks provided by the AppInventor tool, there is a
limit on the size of the application that can be created. Due to
that constraint, there were cases where a major change was
necessary when programming student ideas. Also, there were
occasions when it took more time and effort, more useless
processing than programming with the Java language. In
creation using AppInventor, students sometimes started
programming without thinking about processing method
beforehand. They thought that as a result of rough combining
the blocks, they were lucky to be able to do it. When students
create without thinking about the design of the application, it
takes a lot of work to add information sharing about the design
of the application and add functions. Application creation
without considering application design has little effect on
students' ability to think logically. For students to be able to
write programs with their own ideas, it is also important to
improve their logical thinking ability.

Programming with AppInventor is a motivator for programming
learning by students who are not good at programming and
students who give up programming learning. However, it is not
enough for students who work as engineers in the future to
acquire knowledge and skills of software design, to improve
programming skills, logical thinking ability and problem
solving ability. It is not enough to study grammar in
programming languages; learning software design is necessary
to learn programming skills that help students think logically so
they can write programs from scratch. Learning contents of
programming classes are grammar of programming language,
basic algorithms, requirement analysis in program development,
software design and testing technique. However, many of the
students will not be able to keep up with the classes in grammar
learning in programming languages before learning the
requirement analysis, software design and testing techniques in
program development. Many of the students are losing interest
in grammar learning in programming languages and are giving

166

Proceedings of The 8th International Conference on Society and Information Technologies (ICSIT 2017)

up because programming is difficult. Therefore, in
programming classes, students are not advanced enough to learn
software design. Learning programming language grammar and
software design at the same time in programming lessons is a
heavy burden for the students. Learning of software design
needs to be done separately from learning the grammar of
programming language. We examine a method of teaching
software design in a class of practical training, which students
can consider and output by themselves.

4. CONCLUSIONS

From experiences participating in the programming contest,
students were required to master the knowledge and skills of
software design in order to improve their programming skills
satisfactorily. In the future, we are planning to propose a class
method of learning software design in which technical high
school students cooperated with each other, and to verify its
effectiveness.

5. REFERENCES

[1] Japanese government guidelines for high school education

(Information subject area), Ministry of Education, Culture,
Sports, Science and Technology-Japan (MEXT), 2010.

[2] S. Dohi and N. Konno, "Using the Processing for Practice

of Introduction to Computer Programming Education for
High School Students," Information Processing Society of
Japan,Information education symposium (SSS2013),
Vol.2013, No.2, pp. 217-224, 2013.

[3] Branko Kaucic and Teja Asic, "Improving introductory

programming with Scratch?," MIPRO, 2011 Proceedings of
the 34th International Convention, Opatija, Croatia,
pp. 23-27, 2011.

[4] Manifesto for Agile Software Development,
http://www.agilemanifesto.org/.

[5] Tony Buzan - Inventor of Mind Mapping,

http://www.tonybuzan.com/about/mind-mapping/.

[6] T. Buzan, Mind Map Handbook: The Ultimate Thinking

Tool, Thorsons, 2005.

[7] UML: Object Management Group, http://www.uml.org/.

[8] High School PC Contest,

http://www.u-aizu.ac.jp/pc-concours/.

[9] A. Cockburn and L. Williams, "The Costs and Benefits of

Pair Programming," Extreme Programming Examined, 2000.

[10] L. Williams and R.L. Upchurch," In Support of Student

Pair-programming," Proc. of the SIGCSE Technical
Symposium on Computer Science Education, pp. 327-331,
2001.

[11] Tie Hui Hui and Irfan Naufal Umar, "Pair Programming
and LSs in Computing Education: It’s Impact on Students’
Performances ", 2011.

[12] MIT App Inventor, http://appinventor.mit.edu/explore/.

[13] Vladan Devedzic and Sas˘a R. Milenkovic, "Teaching

Agile Software Development: A Case Study,"
IEEE Transactions on Education, Vol. 54, Issue 2,
pp. 273-278, 2011.

[14] Marcello Missiroli, Daniel Russo and

Paolo Ciancarini, "Learning Agile software
development in high school: an investigation," ICSE '16
Proceedings of the 38th International Conference on
Software Engineering Companion, pp. 293-302, 2016.

[15] I. Diethelm, L. Geiger, and A. Zündorf. "Teaching

Modeling with Objects First," Proc. of the World
Conference on Computers in Education, 2005.

[16] C. Starrett, "Teaching UML Modeling Before

Programming at the High School Level," Proc. of the IEEE
International Conference on Advanced Learning
Technologies, pp. 713-714, 2007.

167

Proceedings of The 8th International Conference on Society and Information Technologies (ICSIT 2017)

http://www.tonybuzan.com/about/mind-mapping/
http://dl.acm.org/author_page.cfm?id=99659024048&coll=DL&dl=ACM&trk=0&cfid=715608998&cftoken=66166670
http://dl.acm.org/author_page.cfm?id=99659026427&coll=DL&dl=ACM&trk=0&cfid=715608998&cftoken=66166670
http://dl.acm.org/author_page.cfm?id=81100551680&coll=DL&dl=ACM&trk=0&cfid=715608998&cftoken=66166670

Relevant Software offers established practices of software product development. Following them is a driving factor for the successful
delivery of solutions.Â When digging deeper, software product development is a highly organized process with precise procedures and
strictly defined steps known as Software Development Life Cycle (SDLC). Whenever you need a sophisticated system, software suite or
end-user web or mobile app your outstanding project delivery, besides all the other important factors, largely depends on a set of
processes practiced by the development team. For software developers, understanding the software development life cycle (SDLC)
facilitates the effective planning and delivery of high-quality software products. This article takes you through the software development
life cycle, providing an overview of the process and limitations of various implementations of the SDLC.Â Developers and software
engineers use it to create effective plans and designs. They also apply the various SDLC stages to develop innovative software
products.Â Various programming languages can be used. These may include languagues such as PHP, Java, C++, Pascal, C, etc. The
language chosen depends on the type of software being developed, the business use-case among other constraints. Testing. With the
fourth industrial revolution, software education has become much more important. In South Korea, Informatics will be taught as
mandatory to middle school students; education program development and applications with block based programming languages are
vivaciously conducted.Â swKim & yjLee, "Development of a Software Education Curriculum for Secondary Schools," Journal of the
Korea society of computer and information, Vol. 21, No. 8, pp. 127-141, 2016. Design a Programming Education Plan for SW Education
Using Robot and Mobile Application Development Tool. Jan 2014. 615-624.Â Comparison of the Effects of Robotics Education to
Programming Education Using Meta-Analysis. Jan 2014. 413-422.

	EB139JI

