HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 4-8

Guest Editor’s Introduction

PSYCHOLOGY OF PROGRAMMING: LOOKING INTO
PROGRAMMERS’ HEADS

Jorma Sajaniemi
Department of Computer Science and Statistics
University of Joensuu, Finland

Psychology of programming (PoP) is an interdisoguly area that covers research into
computer programmers’ cognition; tools and methHodgrogramming related activities; and
programming education. The origins of PoP date liadate 1970s and early 1980s, when
researchers realized that programming tools artthtdogies should not be evaluated based
on their computational power only, but also on thusiability from the human point of view,
that is, based on their cognitive effects. The hapesuch a new approach was that
programmers would make fewer errors, produce bst#tware, and work more efficiently.
In the first Workshop on Empirical Studies of Prammers, Ben Shneiderman listed “several
important destinations for researchers: refining tise of current languages, improving
present and future languages, developing specipbpa languages, and improving tools and
methods” (Shneiderman, 1986, p. 1). During the past decades, the flow of new
languages, tools, and methods has increased rapi@lyscope of programming work has
expanded, and research interests have extendedd¢o group activities. Yet the main goal of
PoP—to assist programmers through the benefitegriitive research—has remained.

The PoP research community consists of cognitiyelpdogists and computer scientists.
The main motivation for computer scientists is thprovement of current tools and the
development of new ones, as well as the discovegeneral principles concerning humans
in the context of programming tasks. Psychologists interested in new theories of human
cognition applicable in other domains too. For thpragramming—a highly complicated
task—provides good opportunities to study high-lesegnitive processes in a complex
setting. This dual character of PoP manifests fitedédo in the skills required from
researchers: a good knowledge of both cognitivelpsipgy and programming or, better still,
psychology, social sciences, and software engingeri

On the other hand, PoP research results are nessedy limited to the programming
domain, but can be applied in other domains thaolue design activities in a formal
environment. As an example, consider cognitive disiens (CDs), which were introduced
by Green (1989) to describe, compare and contnel fregramming language features affect
program design strategies. The dimension role-asspreness, for example, relates to how
well a piece of program code (e.g., “+") reveadsniteaning without a need to study the context

© 2008 Jorma Sajaniemand the Agora Center, University of Jyvaskyla
URN:NBNfi:jyu-200804151349

Looking into Programmers’ Heads

of the piece (addition, string catenation, etcgtelr, CDs were developed further and applied
to many types of cognitive artifacts, such as etioal theorem provers (Kadoda, Stone, &
Diaper, 1999), prototyping techniques (Dearden,diid & Naghsh, 2003), and music
notations (Blackwell & Green, 2003).

Even though the area of PoP seems to be quite wmarcomputer programming—it
covers a large variety of phenomena, from noviggeblems to experts’ tacit knowledge,
from program design to testing and maintenance fiamd short individual programs to huge
software systems. Consequently, research methods as well. Most often, research
methods have been adopted from cognitive psycholeqy, controlled experiments run in
laboratory settings) or social sciences (e.g.df#ldies with qualitative analysis techniques),
but it seems that in many subareas appropriatangdsenethods are yet to be discovered. As
many researchers are also computer science edsictiey have instant access to novices
and, therefore, studies on novices’ problems andramming education are frequent. A new
source of research materials is provided by varapen source communities that make their
program code, change logs, and discussions amauggon developers freely available on
the net. These materials represent expert progragimistate-of-the-art contexts.

During the past two decades, two important worksbepes have been fully devoted to
PoP: the Workshop on Empirical Studies of Prograrsr(ieSP), based primarily in the USA,
and the Psychology of Programming Interest GroupkRélmp (PPIG), having a European
character. The first ESP workshop was held in 1i888/ashington, DC, the eighth and last
one in 1999. Later, this workshop series was inm@ied into the IEEE Symposium on
Visual Languages and Human-Centric Computing (VL&)JGvhich, however, has a broader
scope than pure PoP and includes implementatioecesmnd the like. The European
conference series, PPIG, started in 1989, andraggito be organized annually. It is more
informal in nature than ESP; in addition to fullyewvetloped research papers, PPIG
proceedings include position papers and suggestoyriadividual studies. Many of the best
papers have later been published in more formdkcences and journals.

The organization behind PPIG workshops, the Psygyolof Programming Interest
Group, was established in 1987 and—just like thekaltop—is informal in nature. For
instance, there is no formal committee: Decisiamsdiscussed in an open business meeting
held during every workshop. The interest group ishiels an electronic newsletter and hosts
two mailing lists, a low-volume announcements [ilis another list for discussions. In
essence, the interest group is an informal cotlacbf people who are enthusiastic about
psychological aspects of programming and softwaggneering.

The latest PPIG workshop was held in Joensuu, ridrilaJuly 2007. The scientific program
consisted of four half- or full-day tutorials, aatloral consortium, two keynote addresses, 18
technical presentations, and two discussion sessfkhpaper submissions were reviewed by at
least two—usually three—anonymous reviewers ancrgapere accepted in two categories:
Full Papers and Work in Progress Reports, as deétigehe Program Committee. This special
issue ofHuman Technologgontains five of those papers, selected basechemeaviewers’
statements. The papers were re-reviewed and imgbrfmrepublication in this journal. These
papers demonstrate the variability in themes asghreh methodologies of PPIG workshops.

The first two papers deal with research methodaldgyhe article “A Coding Scheme
Development Methodology Using Grounded Theory fowal@ative Analysis of Pair
Programming,” Stephan Salinger, Laura Plonka, antk Prechelt consider the analysis of

Sajaniemi

rich video data that is typical for programming toeols. They have used grounded theory
(Strauss & Corbin, 1990), in which the whole codisaghased totally on protocol data, and
developed a specific coding scheme to be useddnctmtext of pair programming. The

article provides guidance for the use of groundebty in the analysis of rich protocol data
when the purpose of a study is to understand degnihenomena within a design process.
The principles described in the paper apply to domautside programming, as well.

Rozilawati Razali, Colin Snook, Michael Popplet@nd Paul Garrat have used two
methods to evaluate the usability of a semiformatiation that combines UML (Obiject
Management Group, 2007) with B (Abrial, 1996), th&er being a formal notation for
describing semantics. The evaluation methods ircld®s and the results were analyzed
using grounded theory. This paper, “Usability Assesnt of a UML-based Formal Modeling
Method Using a Cognitive Dimensions Framework,”s¢hdemonstrates how one can use
several research methods for the usability analgéisools within formal domains that
involve design activities.

The next two papers concentrate on specific detéitén programming. Sue Jones and Gary
Burnett tackle a popular problem: how to predicidents’ success in learning programming.
Earlier work on this area has looked at correlatietween programming success and some other
property, for example, field dependence (e.g., MafadReid, 2004), inclination to systematic
behavior (e.g., Dehnadi, 2006), or self-efficacg.(@Niedenbeck, LaBelle, & Kain, 2004). Jones
and Burnett study spatial ability and find a pesitcorrelation between mental rotation ability
and programming success in their paper “Spatiditplaind Learning to Program.”

Juha Sorva looks at variable-oriented programmarggtigm (Sajaniemi & Niemelainen,
1989) and combines it with the notion of roles afiables (Sajaniemi, 2002). This results in
a data-flow description of programs that explicithassifies variables using a fixed set of
categories found in expert programmers’ tacit kreage (Sajaniemi & Navarro Prieto,
2005). The article, “A Roles-Based Approach to ¥hle-Oriented Programming,” also
demonstrates how the new notation can be used émtahexercises even without a fully
functional implementation.

The final paper, “From Procedures to Objects: AdResh Agenda for the Psychology of
Object-Oriented Programming Education” by JormaaSigmi and Marja Kuittinen, presents
an overview of PoP research in novice education delothtes whether existing research
literature, which deals mostly with procedural pesgming, can be applied to current
educational practice that is based on object-agtbmirogramming (de Raadt, Watson, &
Toleman, 2002). The authors point out fundamernitidrénces that make the use of existing
research results in the current context dubious sajest areas that should be studied if
programming education is to be based on reseascitsaather than intuition.

The five papers included in this special issuel@ian Technologgepresent studies in
research methodology and in small scale programnirmegramming in the large, that is,
production of complex software systems, is notespented in this set. The reason is simple:
There were very few papers on that area in the B®IG workshop. This is also typical for
PoP research in general. Research into the cotistiaf large systems, although highly
important, is very expensive and industry partmgling to use their time for such research
are hard to find.

There is still a long way to go before PoP can @®van extensive picture of
programming and software engineering in general.

Looking into Programmers’ Heads

ENDNOTE

1. For more information on the Psychology of Prograng Interest Group, see http://www.ppig.org

REFERENCES

Abrial, J. R. (1996)The B-Method: Assigning programs to meanin@ambridge, UK: Cambridge University
Press.

Blackwell, A., & Green, T. (2003). Notational syste: The cognitive dimensions of notations framewdnk
J. M. Carroll (Ed.)HCI models, theories, and frameworks: Toward a iisitiplinary sciencegpp. 103—
133). San Francisco: Morgan Kaufmann Publishers.

Dearden, A., Siddiqgi, J., & Naghsh, A. (2003, ApriUsing cognitive dimensions to compare prototyping
techniques Paper presented at the 15th Annual Workshop @fRsychology of Programming Interest
Group, Keele, UK.

Dehnadi, S. (2006). Testing programming aptitudel | Romero, J. Good, E. A. Chaparro, & S. Bry&us(),
Proceedings of the 18th Annual Workshop of the lrdpgy of Programming Interest Gro{pPIG '06;
pp. 22-37). Brighton, UK: University of Sussex.

de Raadt, M., Watson, R., & Toleman, M. (2002). gaage trends in introductory programming courses. |
E. Cohen & E. Boyd (Eds.Rroceedings of Informing Science and IT Educationf€rencgInSITE '02;
pp. 329-337). Santa Rosa, CA, USA: Informing Saeimstitute.

Green, T. R. G. (1989). Cognitive dimensions ofations. In A. Sutcliffe & L. Macaulay (Eds.Peopleand
Computers \(pp. 443—-460). Cambridge, UK: Cambridge UniverEitgss.

Kadoda, G., Stone, R., & Diaper, D. (1999, Januddgsirable features of educational theorem proveXs:
cognitive dimensions viewpoinPaper presented at the 11th Annual Workshop efRkychology of
Programming Interest Group, Leeds, UK.

Mancy, R., & Reid, N. (2004). Aspects of cognitstgle and programming. In E. Dunican & T. Greengd
Proceedings of the Sixteenth Annual Workshop oPgyehology of Programming Interest Gro(RPI1G
'04; pp. 1-9). Carlow, Ireland: Institute of Teclogy.

Object Management Group (200Wtroduction to OMG's Unified Modeling Language (UM Retrieved April
11, 2008, from http://www.omg.org/gettingstartedawtis_uml.htm

Sajaniemi, J. (2002). Visualizing roles of variabl® novice programmers. In J. Kuljis, L. Baldwif,R.
Scoble (Eds.)Proceedings of the 17th Annual Workshop of the lRdpgy of Programming Interest
Group (PPIG '02; pp. 111-127). Uxbridge, UK: Brunel Ueisity.

Sajaniemi, J., & Navarro Prieto, R. (2005). Roldsvariables in experts’ programming knowledge. In
P. Romero, J. Good, S. Bryant, & E. A. Chaparros(Eé&roceedings of the 17th Annual Workshop of the
Psychology of Programming Interest Gro{gp. 145-159). Brighton, UK: University of Sussex.

Sajaniemi, J., & Niemeldinen, A. (1989). Progranitied based on variable plans: A cognitive appro&ezh
program manipulation. IrProceedings of the Third International Conference Human-Computer
Interaction on Designing and Using Human-Computgetfaces and Knowledge Based Systénd ed.;
pp. 66—73). New York: Elsevier Science Inc.

Shneiderman, B. (1986). Empirical studies of progreers: The territory, paths, and destinations..|Bd&oway &

S. lyengar (Eds.Empirical studies of programme(pp. 1-12). Norwood, NJ, USA: Ablex Publishing Co.

Strauss, A., & Corbin, J. (199asics of qualitative research: Grounded theorygedures and techniques
London: Sage Publications, Inc.

Wiedenbeck, S., LaBelle, D., & Kain, V. N. R. (2004actors affecting course outcomes in introdyctor
programming. In E. Dunican & T. Green (Ed¥)oceedings of the Sixteenth Annual Workshop of the
Psychology of Programming Interest Gro®P1G '04; pp. 97-110). Carlow, Ireland: InstitofeTechnology.

Sajaniemi

Author’s Note
| am grateful to Pablo Romero who organized théergwng process of the paper that | have coauthored.

All correspondence should be addressed to:
Jorma Sajaniemi

University of Joensuu

P.O.Box 111

FI-80101 Joensuu

Finland

saja@cs.joensuul.fi

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN1795-6889
www.humantechnology.jyu.fi

Considering an MA in Psychology? Learn what kinds of programs will help you reach your goals and check out our list of the best
psychology master's programs.A In this guide, we look at what kinds of psychology master's programs are out there and what the point
of these programs is in terms of how they help you build a career. Moreover, we'll present you with a list of the best psychology master's
programs for various kinds of psychology. What's the Point of a Master's in Psychology? What is the overall purpose of entering a
psychology master's program and earning an advanced degree in psychology? For one, many people choose to get a master's degree
in psychology to learn more about a specific subfield or type of psychology. Topics include egoless programming, intelligence,
psychological measurement, personality factors, motivation, training, social problems on large projects, problem-solving ability,
programming language design, team formation, the programming environment, and much more.A On the other hand, I've trained
thousands of programmers and team leaders, and consulted on hundreds of software projects. I've done more code reviewing,
designing, design reviewing, developing requirements, and reviewing requirements. And, I've especially spent a lot of time training
would-be software managers, and consulting with them.A Looking at the books I've written since Psychology, | can now clearly see that
| was filling the holes. Taking the books chronologically The problem of learning programming language has existed for a long time and
researchers seek to solve this problem. Most instructors agree that there is a problem when teaching programming and many students
are unable to understand programming logic. So there must be a method to encourage them. Students need to be motivated to practise
study and exchange ideas. Gamification is used as a tool to motivate students and increase their engagement. This paper surveys
empirical studies which tackled gamification to encourage computer science students and help them in learning coding or improving
their coding skills. The paper will show the results of using this approach with computer science students at university level. Judge
programming language by breaking writing down into steps, and look at how much knowledge required to choose between options at
each step. Novel language, observe four paper writers working through problems. Example of a macro feature where the correct choice
is not clear.A No body. The evaluation of TED, a techniques editor for Prolog programming. 32 students. 10 week course.A Developed
a language based on review of past psychology of programming results. Experimented with different forumulations of boolean queries.
Found confusion over 'AND', precedence/grouping and users totally ignoring parens. The effect of programming language on error rates
of novice programmers. GRAIL vs LOGO. 26 1st year undergrads, no experience.

